Fast First-Order Methods for Composite Convex Optimization with Backtracking

نویسندگان

  • Katya Scheinberg
  • Donald Goldfarb
  • Xi Bai
چکیده

We propose new versions of accelerated first order methods for convex composite optimization, where the prox parameter is allowed to increase from one iteration to the next. In particular we show that a full backtracking strategy can be used within the FISTA [1] and FALM algorithms [7] while preserving their worst-case iteration complexities of O( √ L(f)/ ). In the original versions of FISTA and FALM the prox parameter value on each iteration has to be bounded from above by its value on prior iterations. The complexity of the algorithm then depends on the smallest value of the prox parameter encountered by the algorithm. The theoretical implications of using full backtracking in the framework of accelerated first-order and alternating linearization methods allows for better complexity estimates that depend on the “average” prox parameter value. Moreover, we show that in the case of compressed sensing problem and Lasso, the additional cost of the new backtracking strategy is negligible compared to the cost the original FISTA iteration. Our computational results show the benefit of the new algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Gauss-Newton method for convex composite optimization

An extension of the Gauss{Newton method for nonlinear equations to convex composite optimization is described and analyzed. Local quadratic convergence is established for the minimization of h F under two conditions, namely h has a set of weak sharp minima, C, and there is a regular point of the inclusion F(x) 2 C. This result extends a similar convergence result due to Womersley which employs ...

متن کامل

Accelerated first-order methods for large-scale convex minimization

This paper discusses several (sub)gradient methods attaining the optimal complexity for smooth problems with Lipschitz continuous gradients, nonsmooth problems with bounded variation of subgradients, weakly smooth problems with Hölder continuous gradients. The proposed schemes are optimal for smooth strongly convex problems with Lipschitz continuous gradients and optimal up to a logarithmic fac...

متن کامل

Forward-backward Truncated Newton Methods for Convex Composite Optimization1

This paper proposes two proximal Newton-CG methods for convex nonsmooth optimization problems in composite form. The algorithms are based on a a reformulation of the original nonsmooth problem as the unconstrained minimization of a continuously differentiable function, namely the forward-backward envelope (FBE). The first algorithm is based on a standard line search strategy, whereas the second...

متن کامل

Exact Worst-Case Performance of First-Order Methods for Composite Convex Optimization

We provide a framework for computing the exact worst-case performance of any algorithm belonging to a broad class of oracle-based first-order methods for composite convex optimization, including those performing explicit, projected, proximal, conditional and inexact (sub)gradient steps. We simultaneously obtain tight worst-case convergence guarantees and explicit problems on which the algorithm...

متن کامل

A Gauss - Newton method for convex composite optimization 1

An extension of the Gauss-Newton method for nonlinear equations to convex composite optimization is described and analyzed. Local quadratic convergence is established for the minimization of h o F under two conditions, namely h has a set of weak sharp minima, C, and there is a regular point of the inclusion F(x) E C. This result extends a similar convergence result due to Womersley (this journa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014